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Dispersion-induced patterns

P. Coullet, T. Frisch, and G. Sonnino
Faculté des Sciences, Institut Non-Lineaire de Nice, Universite de Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
(Received 13 September 1993)

We propose a mechanism for pattern formation in spatially extended systems which generalizes the
Faraday instability. We illustrate this by means of several examples ranging from mechanics to chemical

oscillations.

PACS number(s): 47.20.Ky

Pattern formation has been widely studied both from
the experimental and theoretical viewpoint [1]. All
known forms of patterns come from a spontaneous
symmetry-breaking phase transition, when a spatially
translational-invariant state goes into a structured one.
Patterns have been observed, for example, in convecting
fluids, in liquid crystals, and in the buckling of elastic
plates, etc. In such cases the selection of the wave num-
ber is induced by the geometrical constraints on the ex-
perimental system. In convecting fluids the wavelength
of the pattern is comparable to the height of the con-
tainer. However, there exists mechanisms for pattern
formation which require neither external gradients nor a
specific geometry. The appearance of such intrinsic pat-
terns was first predicted theoretically by Turing [2] and
only recently observed [3,4].

In this paper we describe another generic pattern-
forming mechanism. It generalizes the Faraday instabili-
ty of a free surface of a fluid subjected to a periodic verti-
cal acceleration [5]. The wave number of the patterns,
observed for the Faraday instability, depends on the forc-
ing frequency. Patterns then arise as the interplay be-
tween dispersive waves and the parametric nature of the
instability [6—9]. Our generalization will be illustrated by
two simple physical systems. The first is a mechanical
system, a chain of pendula parametrically pumped. The
other example is an assembly of spatially distributed gen-
eric oscillators governed by a complex Ginzburg-Landau
equation[10], subjected to a parametric forcing. The en-
suing patterns observed resulting from the resonance be-
tween the frequency of excitation and the frequency of a
standing wave will be called “dispersion-induced pat-
terns.” Finally, we shall present an application of the re-
sults obtained in the Ginzberg-Landau model to a simple
autocatalytic chemical reaction.

As a first system, let us consider a chain of pendula in a
periodically varying gravitational field close to twice the
natural frequency of the pendulum. In the continuum
approximation such a system is described by the equation

0, +80,+ {1+ f sin[2(1—v)t]} sin(©)=0,, , (1)

where 8, f, and v represent, respectively, the damping,
the amplitude of the forcing times the square of forcing
frequency, and the detuning parameters. We shall show
that a standing-wave pattern is excited, the wavelength of
which is selected by the forcing frequency. The unforced,
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undamped system can sustain waves, the dispersion rela-
tion of which is given by o=V 1+k2. As usual in para-
metric resonance, the strongest response of the medium is
subharmonic and is at one-half the frequency w; of the
external forcing. It is then natural to expect a pattern
with a wave number matching the frequency w,/2 (Fig.
1). For the sake of simplicity, we shall only consider the
case of weak damping, weak forcing, and weak detuning,

f=€f0 ) 8=650 5 'V=€VO N (2)

where € << 1. In such a parameter regime, we seek a solu-
tion of Eq. (1) of the form

0=A(e+A(the "+ Aoy - 3)

Here Ayoy involves corrections due to higher-order har-
monics, A represents the amplitude of the oscillation,
and A stands for the complex conjugate. At the leading
order the equation for the amplitude reads as

A,=—pA+ial APA+iBA,, +yde ™, @)

where the following coefficients are derived from (1) us-
ing sin@=0-03%/6: a=—1%, B=—1, y=£,/4, and
w=28y/2. After the transformation A (t)— A (t)e ™" we

obtain
A,=ivA—pA+ialA*A+iBA,, +y4 . 5

The stability analysis of the equilibrium state (4 =0) of
the chain is straightforward. Let us write the perturba-

k

FIG. 1. The mechanism for wave-number selection is illus-
trated by means of the dispersion relation.
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tion of the equilibrium state as 4 =(X, +iY, )e? T

The growth rate of such a perturbation then reads as
o=—putV y2—(vo—Bk?? . 6)

For positive detuning, we rediscover the usual parametric
instability in which the instability sets in at zero wave-
length. This result can be directly derived from (1) using
properties of the Mathieu equation. However, for nega-
tive detuning, the instability sets in at a finite wave num-
ber k2=v,/B when y >pu. Therefore, in this parameter
range the pattern consists of a standing wave with a wave
number proportional to the square root of the detuning
(Fig. 2). The weakly nonlinear analysis is easily done by
introducing an order parameter C for the amplitude of
the oscillation in the following manner:

A=CX, +iY;)e ™ +c.c.+ Ayoy - 7)

At the first order in the nonlinearity C obeys the follow-
ing equation:

aC _ 29

oYY IC~a 2MICI C, (8)
where y,=pu. The absence of a third-order term in (8) is
due to the fact that the system we considered is quasicon-
servative.

For the second system, let us consider an assembly of
spatially distributed oscillators subjected to a temporal
parametric forcing with a frequency ;. The amplitude
equation which describes the periodic modulation of such
a system close to a Hopf bifurcation reads as [11]

A,=(—1+iv)A+(1+iB)V* 4
—(1+ia)| APA+yA"" ", 9)

where n is defined by @ =n (w,—v) and o, is the natural
frequency of the oscillators.

In (9) the distance from the threshold of self-
oscillation, the damping coefficient, the nonlinear satura-
tion coefficient, and the diffusion coefficient have all been
rescaled to unity. The amplitude of the forcing is propor-
tional to ¥ and the complex coefficient in front of the La-
placian measures dispersion. Now, consider the case
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FIG. 2. The stability diagram for the chain of parametrically
forced pendula.
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n =2, which occurs when the forcing frequency is close
to twice the natural frequency of the oscillators. The
linear stability analysis of the nonoscillatory solution
A =0 of (9) is straightforward. Setting 4 =X +iY in the
linearized equation, we obtain

X, =(—14+y)X —vY —BV2Y+ViX , (10)
Y, =(—1+y)Y +vX +BV2X +V?Y . o5))

Let X =X,e*e™ and Y =Y,e*e™, then the equation
for the eigenvalue A reads as

AM4+2M1+k>) +c(k)=0, (12)

where ¢ =(v—Bk??—(y —k2—1)(1+y+k?). The first
change of sign of an eigenvalue happens when
¢ =0dc /9k =0.

After some simple algebra one finds that the most un-
stable wave number k, and the instability threshold y,
are given by

k2=——BV“1 an 2=—(B+V)2.
1+82 a4y

0

Note that when Bv— 1 the wave number at which the in-
stability sets in tends to zero. Therefore, in the parame-
ter regime such that where Bv > 1, the pattern is, as in the
case of pendula, a standing wave, the wave number of
which is selected by the linear instability (Fig. 3). Now
consider briefly the amplitude of the pattern, setting

(13)

X
Y

ikgx

=e " C(thutc.c.+ Ayoy » (14)

in which u is determined by the linear analysis, we obtain
close to the finite wavelength instability threshold

(1+a?)
2|Bla

where a =(V'1+8*—|B]).

Therefore, depending on the sign of the cubic term, in
(15) the instability is either supercritical or subcritical. In
the supercritical case, our numerical simulations have
shown that the only stable solutions are the nontrivial

C,=(y—7v,.) c—3(1+a2)1@%@|c|2c, (15)
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FIG. 3. The stability diagram for the Ginzburg-Landau
equation where vo=1/8.
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FIG. 4. Numerical simulations of the Ginzburg-Landau
equation showing the real part of 4. The pattern consists of
rolls with different orientations. The numerical values are
B=—2.0, v=—2.0, =0, and ¥ =2.0. The numerical simula-
tions used a 2562 grid and a finite-difference method (Gauss-
Seidel-Crank-Nicholson) with 8x =0.5 and 8¢ =0.005.

homogeneous solutions (locked states) of (9).

For a two-dimensional (2D) system, a weakly nonlinear
analysis of Eq. (9) shows that rolls are stable when the bi-
furcation is supercritical, and our numerical simulations
confirm this fact (Fig. 4). For the 2D subcritical case our
numerical simulations again have shown that the locked
solutions are stable.

As an example of parametric forcing of dissipative os-
cillators, let us consider a parametrically forced autocata-
lytic chemical oscillation below the threshold of oscilla-
tions. This can be achieved, for example, by periodically
flashing light on a photosensitive reaction [12]. For sake
of simplicity, we choose the Brusselator model [13]

X,= Ak, —(k,B+k,)X +k,YX*+D, VX ,  (16)
Y,=k,BX —k,;YX*>+D, VY . (1

Due to external forcing, the constants of reaction are
periodically varying in time in the following way:

k;=1+ya;cos[(24 +v)t] . (18)

We choose the time dependence of the parametric forcing
to be close to twice the frequency of oscillation. In that
case, conventional methods show that the envelope equa-
tion for the amplitude of oscillation is again (9) [14]. In
the parameter region in which the instability set in at
finite k,, the pattern consists of a standing wave (Fig. 5).
Therefore this standing-wave pattern is not a periodic
modulation of a Turing structure [15] but a Faraday-like
structure although the dispersion in the complex
Ginzburg-Landau equation is proportional to the
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FIG. 5. Numerical simulations of the forced Brusselator
equation showing the X variable. The pattern consists of rolls
with different orientations [20]. The numerical values are
A=2.48, B=17.0, y=0.206, v=0.61, a;=1.0, a,=0.5,
a;=1.2, a,=0.3, D,=1.0, and D,=0.175. Same numerical
method as in Fig. 4.

discrepancies in the diffusion constants. We emphasize
that whatever the sign of D, —Dy is, the existence of
dispersion-induced patterns depends only upon the sign
of the detunning v,.

We have shown that dispersion-induced patterns ap-
pear in parametrically forced, mechanical systems and
generic oscillators below the threshold of oscillation. Op-
tic patterns can also be understood as a result of
diffraction [16]. Experiments with two counter-
propagating beams [17] display various patterns but can-
not be interpreted within the general framework
developed in this paper since they are not related to a
parametric forcing. To end this paper, we note that add-
ing terms oscillating at another resonant frequency in (17)
may stabilize hexagons of the sort observed in the Fara-
day experiment [18]. Finally by playing with the relative
phases between the forcings, more exotic patterns as, for
example, quasicrystalline ones, may be stabilized [18,19].
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FIG. 4. Numerical simulations of the Ginzburg-Landau
equation showing the real part of 4. The pattern consists of
rolls with different orientations. The numerical values are
B=—2.0, v=—2.0, a=0, and y=2.0. The numerical simula-
tions used a 256* grid and a finite-difference method (Gauss-
Seidel-Crank-Nicholson) with 8x =0.5 and 6t =0.005.



FIG. 5. Numerical simulations of the forced Brusselator
equation showing the X variable. The pattern consists of rolls
with different orientations [20]. The numerical values are
A=248, B=10, y=0.206, v=0.61, a,=1.0, a,=0.5,
a;=1.2, a;,=0.3, D,=1.0, and D,=0.175. Same numerical
method as in Fig. 4.



